Research Interests

Signal evolution (fireflies)

Animals use signals to elicit reactions from other individuals that will enhance their own survival and reproduction, for example territorial behavior or alarm calls. Signals involved in mating are perhaps the most important signals because they directly relate to whether an organism will have the opportunity to mate and reproduce. How and why new mating signals arise and how they spread through a population remain open fields of research in evolutionary biology.

Fireflies, in the beetle family Lampyridae, offer an ideal system to study signal evolution because of their conspicuous and highly variable sexual signals. With over 2000 species worldwide, fireflies exhibit lighted signals ranging from simple glows to complex flashes, as well as non-lighted long-distance pheromone signals. Aside from differing in pattern, lighted signals also differ in color and range from green to orange. Genes are known that govern light emission color (luciferase) and visual receptor sensitivity (opsins). This area of my research seeks to examine signal evolution by investigating genes directly underlying both signaling and reception traits.

Repetitive DNA evolution (Drosophila, fireflies)

Repetitive satellite DNA is a major component of most eukaryotic genomes, including humans. Satellite DNAs can exist as selfish genomic parasites that propagate in the genome at the expense of the host, or, alternatively, may form essential chromosome structures including centromeres, which ensure proper chromosome separation during cell division, and telomeres, which protect the ends of chromosomes from degradation. Despite participating in these essential structures, satellite DNA sequences differ widely in sequence and abundance in the genome, even between closely related species. Molecular and theoretical models exist to explain how and why repetitive DNA shows such rapid evolution. However, few studies test these models using genome-wide data because the repetitive part of the genome is difficult to accurately sequence and measure.

This part of my research seeks to assess genome-wide satellite sequences in short-read genomic sequencing datasets and test hypotheses for their evolution (e.g. selection, drift). It is important to understand how repeats vary across populations, how and why they change over time, and their underlying genetic determinants because they are associated with diseases affecting human health including cancer, differences in immunity, and premature aging.

The firefly genome project

In collaboration with Megan Behringer (Indiana University), Seth Bybee (BYU), Tim Fallon (MIT), Amanda Larracuente (Rochester), Sara Lewis (Tufts), Gavin Martin (BYU), and Jing-Ke Weng (MIT).

Photo credit: Geoff Giller

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this:
search previous next tag category expand menu location phone mail time cart zoom edit close